

NAME: MR230C

Product Description:

MOPLEN MR230C is a polypropylene random copolymer grade, designed for hot and cold water supply systems. It is also suitable for industrial water conveyance.

The material has excellent creep properties and process ability by extrusion and by injection molding.

Typical data: (Table)

TYPICAL PROPERTIES		ISO	UNIT	VALUE	ASTM	UNIT	VALUE
		METHOD			METHOD		
Physical properties	•	•	•	•	•		•
Melt flow rate (190 °C, 5 kg)		R 1133	g/10 min	0.4-0.6	D 1238 L	g/10 min	0.4-0.6
Melt flow rate (230°C, 2.16 kg)		R 1133	g/10 min	<0.3	D 1238 L	g/10 min	<0.3
Melt flow rate (230°C, 5 kg)		R 1133	g/10 min	0.8-1.3	D 1238 L	g/10 min	0.8-1.3
Hardness Rockwell		R 2039/2	R scale	93			
Linear coefficient of expansion					D 696	mm/(mx°C)	0.11
Thermal conductivity (23°C)		R3146	W/(mxK)	0.17			
Specific gravity		R1183		0.89	D 792		0.89
Mechanical properties							
Flexural modulus		R 178	MPa	835	D 790	MPa	950
Tensile strength at yield		R 527	MPa	28	D 638	MPa	28
Elongation at break		R 527	%	>430	D 638	%	>430
Notched Izod impact strength	23°C	R180/1A	kJ/m²	NB	D 256	J/m	NB
	0°C	R180/1A	kJ/m ²	9.Oca	D 256	J/m	160
	-20°C	R 180/1A	kJ/m ²	4.Eyl	D 256	J/m	50
Unnotched Izod imp. Strength	23°C	R 180/1A	kJ/m²	NB	D 256	J/m	NB
	0°C	R 180/1A	kJ/m ²	NB	D 256	J/m	NB
Thermal properties							
Vicat softening point (9.8N)		R 306	°C	135	D 1525	°C	135
H.D.T. (0.45 Mpa)		R 75	°C	80	D 648	°C	80
Accelerated öven ageing at 135°C		R 4577	hours	>9,000	D 3012	hours	>9,000

values ma ASTM and	own are averages and not to be considered as product specifications. These by shift slightly as more data is accumulated d ISO test methods are the latest under the society current procedures. All its are prepared by injection